extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C6).1(C3×S3) = C9×A4⋊C4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 108 | 3 | (C2^2xC6).1(C3xS3) | 432,242 |
(C22×C6).2(C3×S3) = C18×S4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 54 | 3 | (C2^2xC6).2(C3xS3) | 432,532 |
(C22×C6).3(C3×S3) = C32×A4⋊C4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 108 | | (C2^2xC6).3(C3xS3) | 432,615 |
(C22×C6).4(C3×S3) = C62.Dic3 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 36 | 6- | (C2^2xC6).4(C3xS3) | 432,249 |
(C22×C6).5(C3×S3) = C3×C6.S4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).5(C3xS3) | 432,250 |
(C22×C6).6(C3×S3) = C62⋊5Dic3 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 36 | 6- | (C2^2xC6).6(C3xS3) | 432,251 |
(C22×C6).7(C3×S3) = C2×C32.S4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 18 | 6+ | (C2^2xC6).7(C3xS3) | 432,533 |
(C22×C6).8(C3×S3) = C6×C3.S4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).8(C3xS3) | 432,534 |
(C22×C6).9(C3×S3) = C2×C62⋊S3 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 18 | 6+ | (C2^2xC6).9(C3xS3) | 432,535 |
(C22×C6).10(C3×S3) = C3×C6.7S4 | φ: C3×S3/C3 → S3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).10(C3xS3) | 432,618 |
(C22×C6).11(C3×S3) = Dic9⋊A4 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 108 | 6- | (C2^2xC6).11(C3xS3) | 432,265 |
(C22×C6).12(C3×S3) = A4×Dic9 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 108 | 6- | (C2^2xC6).12(C3xS3) | 432,266 |
(C22×C6).13(C3×S3) = C62⋊4C12 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 36 | 6- | (C2^2xC6).13(C3xS3) | 432,272 |
(C22×C6).14(C3×S3) = C2×D9⋊A4 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 54 | 6+ | (C2^2xC6).14(C3xS3) | 432,539 |
(C22×C6).15(C3×S3) = C2×A4×D9 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 54 | 6+ | (C2^2xC6).15(C3xS3) | 432,540 |
(C22×C6).16(C3×S3) = C2×C62⋊C6 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 18 | 6+ | (C2^2xC6).16(C3xS3) | 432,542 |
(C22×C6).17(C3×S3) = A4×C3⋊Dic3 | φ: C3×S3/C3 → C6 ⊆ Aut C22×C6 | 108 | | (C2^2xC6).17(C3xS3) | 432,627 |
(C22×C6).18(C3×S3) = Dic3×C3.A4 | φ: C3×S3/S3 → C3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).18(C3xS3) | 432,271 |
(C22×C6).19(C3×S3) = C2×S3×C3.A4 | φ: C3×S3/S3 → C3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).19(C3xS3) | 432,541 |
(C22×C6).20(C3×S3) = C3×Dic3×A4 | φ: C3×S3/S3 → C3 ⊆ Aut C22×C6 | 36 | 6 | (C2^2xC6).20(C3xS3) | 432,624 |
(C22×C6).21(C3×S3) = C9×C6.D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).21(C3xS3) | 432,165 |
(C22×C6).22(C3×S3) = C18×C3⋊D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).22(C3xS3) | 432,375 |
(C22×C6).23(C3×S3) = C32×C6.D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).23(C3xS3) | 432,479 |
(C22×C6).24(C3×S3) = C3×C18.D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).24(C3xS3) | 432,164 |
(C22×C6).25(C3×S3) = C62⋊3C12 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).25(C3xS3) | 432,166 |
(C22×C6).26(C3×S3) = C62.27D6 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).26(C3xS3) | 432,167 |
(C22×C6).27(C3×S3) = C2×C6×Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).27(C3xS3) | 432,372 |
(C22×C6).28(C3×S3) = C6×C9⋊D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).28(C3xS3) | 432,374 |
(C22×C6).29(C3×S3) = C22×C32⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).29(C3xS3) | 432,376 |
(C22×C6).30(C3×S3) = C2×He3⋊6D4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).30(C3xS3) | 432,377 |
(C22×C6).31(C3×S3) = C22×C9⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).31(C3xS3) | 432,378 |
(C22×C6).32(C3×S3) = C2×Dic9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).32(C3xS3) | 432,379 |
(C22×C6).33(C3×S3) = C3×C62⋊5C4 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).33(C3xS3) | 432,495 |
(C22×C6).34(C3×S3) = D9×C22×C6 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).34(C3xS3) | 432,556 |
(C22×C6).35(C3×S3) = C23×C32⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).35(C3xS3) | 432,558 |
(C22×C6).36(C3×S3) = C23×C9⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 72 | | (C2^2xC6).36(C3xS3) | 432,559 |
(C22×C6).37(C3×S3) = C2×C6×C3⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C22×C6 | 144 | | (C2^2xC6).37(C3xS3) | 432,718 |
(C22×C6).38(C3×S3) = Dic3×C2×C18 | central extension (φ=1) | 144 | | (C2^2xC6).38(C3xS3) | 432,373 |
(C22×C6).39(C3×S3) = S3×C22×C18 | central extension (φ=1) | 144 | | (C2^2xC6).39(C3xS3) | 432,557 |
(C22×C6).40(C3×S3) = Dic3×C62 | central extension (φ=1) | 144 | | (C2^2xC6).40(C3xS3) | 432,708 |