extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC6).1(C3xS3) = C9xA4:C4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 108 | 3 | (C2^2xC6).1(C3xS3) | 432,242 |
(C22xC6).2(C3xS3) = C18xS4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 54 | 3 | (C2^2xC6).2(C3xS3) | 432,532 |
(C22xC6).3(C3xS3) = C32xA4:C4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 108 | | (C2^2xC6).3(C3xS3) | 432,615 |
(C22xC6).4(C3xS3) = C62.Dic3 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 36 | 6- | (C2^2xC6).4(C3xS3) | 432,249 |
(C22xC6).5(C3xS3) = C3xC6.S4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).5(C3xS3) | 432,250 |
(C22xC6).6(C3xS3) = C62:5Dic3 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 36 | 6- | (C2^2xC6).6(C3xS3) | 432,251 |
(C22xC6).7(C3xS3) = C2xC32.S4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 18 | 6+ | (C2^2xC6).7(C3xS3) | 432,533 |
(C22xC6).8(C3xS3) = C6xC3.S4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).8(C3xS3) | 432,534 |
(C22xC6).9(C3xS3) = C2xC62:S3 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 18 | 6+ | (C2^2xC6).9(C3xS3) | 432,535 |
(C22xC6).10(C3xS3) = C3xC6.7S4 | φ: C3xS3/C3 → S3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).10(C3xS3) | 432,618 |
(C22xC6).11(C3xS3) = Dic9:A4 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 108 | 6- | (C2^2xC6).11(C3xS3) | 432,265 |
(C22xC6).12(C3xS3) = A4xDic9 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 108 | 6- | (C2^2xC6).12(C3xS3) | 432,266 |
(C22xC6).13(C3xS3) = C62:4C12 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 36 | 6- | (C2^2xC6).13(C3xS3) | 432,272 |
(C22xC6).14(C3xS3) = C2xD9:A4 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 54 | 6+ | (C2^2xC6).14(C3xS3) | 432,539 |
(C22xC6).15(C3xS3) = C2xA4xD9 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 54 | 6+ | (C2^2xC6).15(C3xS3) | 432,540 |
(C22xC6).16(C3xS3) = C2xC62:C6 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 18 | 6+ | (C2^2xC6).16(C3xS3) | 432,542 |
(C22xC6).17(C3xS3) = A4xC3:Dic3 | φ: C3xS3/C3 → C6 ⊆ Aut C22xC6 | 108 | | (C2^2xC6).17(C3xS3) | 432,627 |
(C22xC6).18(C3xS3) = Dic3xC3.A4 | φ: C3xS3/S3 → C3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).18(C3xS3) | 432,271 |
(C22xC6).19(C3xS3) = C2xS3xC3.A4 | φ: C3xS3/S3 → C3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).19(C3xS3) | 432,541 |
(C22xC6).20(C3xS3) = C3xDic3xA4 | φ: C3xS3/S3 → C3 ⊆ Aut C22xC6 | 36 | 6 | (C2^2xC6).20(C3xS3) | 432,624 |
(C22xC6).21(C3xS3) = C9xC6.D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).21(C3xS3) | 432,165 |
(C22xC6).22(C3xS3) = C18xC3:D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).22(C3xS3) | 432,375 |
(C22xC6).23(C3xS3) = C32xC6.D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).23(C3xS3) | 432,479 |
(C22xC6).24(C3xS3) = C3xC18.D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).24(C3xS3) | 432,164 |
(C22xC6).25(C3xS3) = C62:3C12 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).25(C3xS3) | 432,166 |
(C22xC6).26(C3xS3) = C62.27D6 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).26(C3xS3) | 432,167 |
(C22xC6).27(C3xS3) = C2xC6xDic9 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 144 | | (C2^2xC6).27(C3xS3) | 432,372 |
(C22xC6).28(C3xS3) = C6xC9:D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).28(C3xS3) | 432,374 |
(C22xC6).29(C3xS3) = C22xC32:C12 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 144 | | (C2^2xC6).29(C3xS3) | 432,376 |
(C22xC6).30(C3xS3) = C2xHe3:6D4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).30(C3xS3) | 432,377 |
(C22xC6).31(C3xS3) = C22xC9:C12 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 144 | | (C2^2xC6).31(C3xS3) | 432,378 |
(C22xC6).32(C3xS3) = C2xDic9:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).32(C3xS3) | 432,379 |
(C22xC6).33(C3xS3) = C3xC62:5C4 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).33(C3xS3) | 432,495 |
(C22xC6).34(C3xS3) = D9xC22xC6 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 144 | | (C2^2xC6).34(C3xS3) | 432,556 |
(C22xC6).35(C3xS3) = C23xC32:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).35(C3xS3) | 432,558 |
(C22xC6).36(C3xS3) = C23xC9:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 72 | | (C2^2xC6).36(C3xS3) | 432,559 |
(C22xC6).37(C3xS3) = C2xC6xC3:Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C22xC6 | 144 | | (C2^2xC6).37(C3xS3) | 432,718 |
(C22xC6).38(C3xS3) = Dic3xC2xC18 | central extension (φ=1) | 144 | | (C2^2xC6).38(C3xS3) | 432,373 |
(C22xC6).39(C3xS3) = S3xC22xC18 | central extension (φ=1) | 144 | | (C2^2xC6).39(C3xS3) | 432,557 |
(C22xC6).40(C3xS3) = Dic3xC62 | central extension (φ=1) | 144 | | (C2^2xC6).40(C3xS3) | 432,708 |