Extensions 1→N→G→Q→1 with N=C22xC6 and Q=C3xS3

Direct product G=NxQ with N=C22xC6 and Q=C3xS3
dρLabelID
S3xC2xC62144S3xC2xC6^2432,772

Semidirect products G=N:Q with N=C22xC6 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C22xC6):1(C3xS3) = C3xC6xS4φ: C3xS3/C3S3 ⊆ Aut C22xC654(C2^2xC6):1(C3xS3)432,760
(C22xC6):2(C3xS3) = C6xC3:S4φ: C3xS3/C3S3 ⊆ Aut C22xC6366(C2^2xC6):2(C3xS3)432,761
(C22xC6):3(C3xS3) = C2xA4xC3:S3φ: C3xS3/C3C6 ⊆ Aut C22xC654(C2^2xC6):3(C3xS3)432,764
(C22xC6):4(C3xS3) = S3xC6xA4φ: C3xS3/S3C3 ⊆ Aut C22xC6366(C2^2xC6):4(C3xS3)432,763
(C22xC6):5(C3xS3) = C3xC6xC3:D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6):5(C3xS3)432,709
(C22xC6):6(C3xS3) = C6xC32:7D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6):6(C3xS3)432,719
(C22xC6):7(C3xS3) = C3:S3xC22xC6φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6):7(C3xS3)432,773

Non-split extensions G=N.Q with N=C22xC6 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C22xC6).1(C3xS3) = C9xA4:C4φ: C3xS3/C3S3 ⊆ Aut C22xC61083(C2^2xC6).1(C3xS3)432,242
(C22xC6).2(C3xS3) = C18xS4φ: C3xS3/C3S3 ⊆ Aut C22xC6543(C2^2xC6).2(C3xS3)432,532
(C22xC6).3(C3xS3) = C32xA4:C4φ: C3xS3/C3S3 ⊆ Aut C22xC6108(C2^2xC6).3(C3xS3)432,615
(C22xC6).4(C3xS3) = C62.Dic3φ: C3xS3/C3S3 ⊆ Aut C22xC6366-(C2^2xC6).4(C3xS3)432,249
(C22xC6).5(C3xS3) = C3xC6.S4φ: C3xS3/C3S3 ⊆ Aut C22xC6366(C2^2xC6).5(C3xS3)432,250
(C22xC6).6(C3xS3) = C62:5Dic3φ: C3xS3/C3S3 ⊆ Aut C22xC6366-(C2^2xC6).6(C3xS3)432,251
(C22xC6).7(C3xS3) = C2xC32.S4φ: C3xS3/C3S3 ⊆ Aut C22xC6186+(C2^2xC6).7(C3xS3)432,533
(C22xC6).8(C3xS3) = C6xC3.S4φ: C3xS3/C3S3 ⊆ Aut C22xC6366(C2^2xC6).8(C3xS3)432,534
(C22xC6).9(C3xS3) = C2xC62:S3φ: C3xS3/C3S3 ⊆ Aut C22xC6186+(C2^2xC6).9(C3xS3)432,535
(C22xC6).10(C3xS3) = C3xC6.7S4φ: C3xS3/C3S3 ⊆ Aut C22xC6366(C2^2xC6).10(C3xS3)432,618
(C22xC6).11(C3xS3) = Dic9:A4φ: C3xS3/C3C6 ⊆ Aut C22xC61086-(C2^2xC6).11(C3xS3)432,265
(C22xC6).12(C3xS3) = A4xDic9φ: C3xS3/C3C6 ⊆ Aut C22xC61086-(C2^2xC6).12(C3xS3)432,266
(C22xC6).13(C3xS3) = C62:4C12φ: C3xS3/C3C6 ⊆ Aut C22xC6366-(C2^2xC6).13(C3xS3)432,272
(C22xC6).14(C3xS3) = C2xD9:A4φ: C3xS3/C3C6 ⊆ Aut C22xC6546+(C2^2xC6).14(C3xS3)432,539
(C22xC6).15(C3xS3) = C2xA4xD9φ: C3xS3/C3C6 ⊆ Aut C22xC6546+(C2^2xC6).15(C3xS3)432,540
(C22xC6).16(C3xS3) = C2xC62:C6φ: C3xS3/C3C6 ⊆ Aut C22xC6186+(C2^2xC6).16(C3xS3)432,542
(C22xC6).17(C3xS3) = A4xC3:Dic3φ: C3xS3/C3C6 ⊆ Aut C22xC6108(C2^2xC6).17(C3xS3)432,627
(C22xC6).18(C3xS3) = Dic3xC3.A4φ: C3xS3/S3C3 ⊆ Aut C22xC6366(C2^2xC6).18(C3xS3)432,271
(C22xC6).19(C3xS3) = C2xS3xC3.A4φ: C3xS3/S3C3 ⊆ Aut C22xC6366(C2^2xC6).19(C3xS3)432,541
(C22xC6).20(C3xS3) = C3xDic3xA4φ: C3xS3/S3C3 ⊆ Aut C22xC6366(C2^2xC6).20(C3xS3)432,624
(C22xC6).21(C3xS3) = C9xC6.D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).21(C3xS3)432,165
(C22xC6).22(C3xS3) = C18xC3:D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).22(C3xS3)432,375
(C22xC6).23(C3xS3) = C32xC6.D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).23(C3xS3)432,479
(C22xC6).24(C3xS3) = C3xC18.D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).24(C3xS3)432,164
(C22xC6).25(C3xS3) = C62:3C12φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).25(C3xS3)432,166
(C22xC6).26(C3xS3) = C62.27D6φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).26(C3xS3)432,167
(C22xC6).27(C3xS3) = C2xC6xDic9φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6).27(C3xS3)432,372
(C22xC6).28(C3xS3) = C6xC9:D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).28(C3xS3)432,374
(C22xC6).29(C3xS3) = C22xC32:C12φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6).29(C3xS3)432,376
(C22xC6).30(C3xS3) = C2xHe3:6D4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).30(C3xS3)432,377
(C22xC6).31(C3xS3) = C22xC9:C12φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6).31(C3xS3)432,378
(C22xC6).32(C3xS3) = C2xDic9:C6φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).32(C3xS3)432,379
(C22xC6).33(C3xS3) = C3xC62:5C4φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).33(C3xS3)432,495
(C22xC6).34(C3xS3) = D9xC22xC6φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6).34(C3xS3)432,556
(C22xC6).35(C3xS3) = C23xC32:C6φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).35(C3xS3)432,558
(C22xC6).36(C3xS3) = C23xC9:C6φ: C3xS3/C32C2 ⊆ Aut C22xC672(C2^2xC6).36(C3xS3)432,559
(C22xC6).37(C3xS3) = C2xC6xC3:Dic3φ: C3xS3/C32C2 ⊆ Aut C22xC6144(C2^2xC6).37(C3xS3)432,718
(C22xC6).38(C3xS3) = Dic3xC2xC18central extension (φ=1)144(C2^2xC6).38(C3xS3)432,373
(C22xC6).39(C3xS3) = S3xC22xC18central extension (φ=1)144(C2^2xC6).39(C3xS3)432,557
(C22xC6).40(C3xS3) = Dic3xC62central extension (φ=1)144(C2^2xC6).40(C3xS3)432,708

׿
x
:
Z
F
o
wr
Q
<